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DynGFN

Motivation

How can we “reprogram” diseased cells back to healthy cells?
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Motivation

How can we “reprogram” diseased cells back to healthy cells?

Gene Regulatory Network

Understanding (approximating) the system as
a causal model will help us make informed
(and interpretable) decisions for interventions
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Motivation

How can we “reprogram” diseased cells back to healthy cells?
How do we learn the Gene Regulatory Network?

Gene Regulatory Network

Understanding (approximating) the system as
a causal model will help us make informed
(and interpretable) decisions for interventions
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Background

 Gene Regulatory Network (GRN)

Cell Cycle Module

Cdc25C

—  True edges

— — —p Potential edges

INSTITUTE  @ax/Y
00

DynGFN Ve E5Mila

(Gror)



Background

 Gene Regulatory Network (GRN)

« Describes interactions between genes and cell Cycle Module
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Background

 Gene Regulatory Network (GRN)

Cell Cycle Module

* Describes interactions between genes and

their products that control gene expression A A

Cdc25C

and cellular function

 Gene Regulatory Network Inference

—  True edges

- — —p Potential edges

* i\
DynGFN 7 IY\IESQI'-II-'I(')URTE :’:’Q‘\Mlla

N/
Y

(Gror)



Background

 Gene Regulatory Network (GRN)

Cell Cycle Module

* Describes interactions between genes and
their products that control gene expression A A
and cellular function

Cdc25C

 Gene Regulatory Network Inference

—_—p True edges

* GRN inference is a fundamental problem in
biology because of its applications to our
understanding of cell function, drug
discovery, cell development ...

- — —p Potential edges

e |t can be cast as a causal structure
learning problem
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GRN inference from data is hard!

 Causal discovery / structure learning is
generally a difficult problem.
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GRN inference from data is hard!

nature methods
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 Causal discovery / structure learning is Benchmarking algorithms for gene regulatory network
generally a difficult problem. inference from single-cell transcriptomic data
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* Learning GRNs from data remains far from
solved
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Causal Discovery for GRNs ... problems

e (Causal structure learning for GRNs come
with two non-standard challenges:
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Causal Discovery for GRNs ... problems
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Causal Discovery for GRNs ... problems
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Bayesian Structure Learning
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 We want to explicitly model the uncertainty
over possible structures / GRNs
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Bayesian Structure Learning

 We want to explicitly model the uncertainty
over possible structures / GRNs

* Objective: learn a posterior over graphs

b dx b dx b dx
and parameters of the structural model that )
best explain the data
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Bayesian Structure Learning

 We want to explicitly model the uncertainty
over possible structures / GRNs

* Objective: learn a posterior over graphs

and parameters of the structural model that ) ) - " oo 4
best explain the data :
p(G,0|D) x p(D| G, 0)p(@| G)p(G) " O
V3 O
_
~
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Bayesian Structure Learning

 We want to explicitly model the uncertainty
over possible structures / GRNs

* Objective: learn a posterior over graphs

and parameters of the structural model that . ) - " oo 4
best explain the data
p(G,0|D) x p(D| G, 0)p(@| G)p(G) " O
V3 O
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~

* This factorization forms the basis of our
iInference procedure
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Bayesian Structure Learning

 We want to explicitly model the uncertainty
over possible structures / GRNs

* Objective: learn a posterior over graphs

and parameters of the structural model that . ) - " oo 4
best explain the data
p(G,0|D) x p(D| G, 0)p(@| G)p(G) " O
V3 O
_
~

* This factorization forms the basis of our
iInference procedure

* (We can use uncertainty over edges to
inform how to perturb the system, perhaps)
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Structural Model

UMAP2

* We use the fact that we can estimate instantaneous '_
change of gene expression (RNA-velocity) to Riba, et al. Nature Communications (2022)

acquire data of the form D = (x, dx)
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Structural Model

e We use the fact that we can estimate instantaneous
change of gene expression (RNA-velocity) to

acquire data of the form D = (x, dx)

* This helps us pose the problem as sparse
Identification of dynamical system

DynGFN
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Structural Model

e We use the fact that we can estimate instantaneous
change of gene expression (RNA-velocity) to

acquire data of the form D = (x, dx)

* This helps us pose the problem as sparse
Identification of dynamical system

dx (1) B
dr

f(Pa(x,), €;)

DynGFN

UMAP2

Riba, et al. Nature Communications (2022)

" Structural Model
Xg d x j
G ; —> dx
{9} . 2O
x s

p(D|G,0) x o —lldx—fg(x,G)|

fp(x,G) - dx
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Structural Model

e We use the fact that we can estimate instantaneous
change of gene expression (RNA-velocity) to

acquire data of the form D = (x, dx)

* This helps us pose the problem as sparse
Identification of dynamical system

dx (1) B
dr

fi(Pa(x;), €;)

* This models causal structure between genes over
time (and includes cyclic feedback)

DynGFN

UMAP2

Riba, et al. Nature Communications (2022)

" Structural Model
Xg d x j
G ; —> dx
{9} . 2O
x s
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Graph Sampler

 The graph sampler is a generative model that
approximates p(G) (this is a discrete distribution)
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Graph Sampler

 The graph sampler is a generative model that
approximates p(G) (this is a discrete distribution)

* \We use recent advances in generative flow networks
(GFlowNets, GFNs) to learn a complex posterior over
discrete/graph structure

DynGFN

GFN Graph Sampler

0,(G) x p(G) > G




Generative Flow Networks (GFlowNets)

* (Generative modelling framework for
learning to sample from discrete
unnormalized probability distributions
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Generative Flow Networks (GFlowNets)

* (Generative modelling framework for
learning to sample from discrete

unnormalized probability distributions
'c"l‘)"} v@ 2 @'f.’ﬁ-‘i" ?@ YIS “A@.
* GFlowNets learn a forward transition . ""f:a%’ '3;?\ W
i ' s Y ’ 4 Te PR
probability P that is used to sample \'% y | &

trajectory 7 = (s, - - ., Sf)

(Bengio et al. JMLR, 2022)
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* (Generative modelling framework for g/p
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Generative Flow Networks (GFlowNets)

* (Generative modelling framework for g/p gg

learning to sample from discrete / /<

unnormalized probability distributions
'c"l‘)"} v@ 2 @'f.’ﬁ-‘i" ?@ YIS “A@.
* GFlowNets learn a forward transition . ""f:a%’ '3;?\ W
i ' s Y ’ 4 Te PR
probability P that is used to sample \'% y | &

trajectory 7 = (s, - - ., Sf)

(Bengio et al. JMLR, 2022)
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GFlowNets seem to do well in approximating
multi-modal discrete distributions

1500 -

—  GFlowNet _
e Lo-1 —— constant
A MARS counting 100°
RS o v — neighbors S ]
= 1000 - PPO §,10—2 — Cliques 2 :
7 L
8 0 | % 10_1 -
F _
o 1
# 10_4 | | | 1 10_2 | | | |

0.0 05 10 15 20 2.5 0.0 05 10 15 20 2.5
0 1 ; ! , # examples seen  le’/ # examples seen le7
0.0 0.2 0.4 0.6 0.8 1.0
states visited x 100 (Atanackovic et al. arxiv, 2024)

(Bengio et al. NeurlPS, 2021)
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The “Per-node” GFlowNet

« \ery large space of graphs G to search over
2
— we can reduce this to help the model: 2¢
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The “Per-node” GFlowNet

« \ery large space of graphs G to search over
2
— we can reduce this to help the model: 2¢

* We can exploit the independence structure
of our problem to improve scalability

0G|ID)= || Q«GI-.ilID)

i€[1,....d]
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The “Per-node” GFlowNet

« \ery large space of graphs G to search over
2
— we can reduce this to help the model: 2¢ Xy O

dx,
* We can exploit the independence structure :
of our problem to improve scalability 12 O

0G|ID)= || Q«GI-.ilID)

i€[1,....d]

e This way, we learn d GFNs. Thus search

reduces to d2¢ possible graphs instead of
24"

DynGFN
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Parameter HyperNetwork

« Lastly, we need to learn a set of parameters & for parameter HyperNetwork
each respective graph G, i.e. P(8| G) G

)

0

9 [

h¢(G) — 0
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Parameter HyperNetwork

« Lastly, we need to learn a set of parameters & for
Parameter HyperNetwork

each respective graph G, i.e. P(8| G) G
— 0
* [, define the regulatory functions between %o
variables (genes). G denotes the existence of a - \_J
relationship.
h¢(G) — 0
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Parameter HyperNetwork

 Lastly, we need to learn a set of parameters 6 for
each respective graph G, i.e. P(8| G)

* [, define the regulatory functions between

variables (genes). G denotes the existence of a
relationship.

* For this, we consider a HyperNetwork to learn the

parameters of the structural model given graph
structure

DynGFN
d 12
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Putting Everything Together

DynGFN for Bayesian Dynamic Structure Learning — a fully differentiable framework

p(G,0,D)=pD|G,0)
—~ = e R R R EEL B L = - - - - - - - -~ = '

GFN Graph Sampler

Parameter HyperNetwork
G ~ G ;
0y (G) : .
1 e

» G

0,(G)xp(G)—> G

h¢(G) — 0

9%

p(G)
Structural Model
X d x j
Ny Ny
X =mme- >

pD|G,0) x ¢~ ldx=fg(x.G)]

fe(x,G)*ﬁ

- Note, our framework is not limited to GFlowNets (any sampler for G ~ @, (G) can be used)

DynGFN
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DynGFN

Synthetic Experiments

Simulating synthetic data over possible structures

Dynamic

Graph

Static Graph
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Results on synthetic 20-D linear and non-linear systems

Linear System

Gl

Model Bayes-SHD | AUC t KL | NLL |
¢-DynBCD 32.0 & 0.27 0.71 £ 0.0 1707.45 4 9.66 —
Z-DynDiBS 29.2 4 0.78 0.71£0.0 662243 +171.67 —
£-DynGFN 228 +14 0.75+0.01 1091.60 + 35.72 —
h-DynBCD 55+11 0.894+0.04 701.19+46.99 (9.83 = 0.59)E — 5
h-DynDiBS 28.5+4.2 0.51+0.07 7934.90+381.80 (8.17 £1.30)E — 6
h-DynGFN 6.7+ 0.0 0.94 + 0.0 350.92 +30.15 (8.35 +£0.02)E — 3
Non-linear System
Model Bayes-SHD | AUC T KL | NLL |
¢-DynBCD 77.51+83 0.424+0.03 3814.86 £ 354.56 -
£-DynDiBS 75. 7+ 7.7 059+ 0.01 5893.65 + 59.66 —
¢-DynGFN 45.7 + 0.6 0.55+0.0 226.25 + 6.58 —
h-DynBCD 192.9 £ 0.7 0.50+ 0.0 9108.69 +51.34 (3.83 =0.32)E — 4
h-DynDiBS 48.1+9.0 0.53+0.10 8716.64 +265.29 (4.06 +£0.10)E — 6
h-DynGFN 326 09 0.67 +0.01 193.28 +8.53 (1.47+0.11)E—3
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Real Data Experiments

Cell Cycle Module

Cdc25A Cdc25C
| Results using scRNA-seq expression and velocity
data for 5 genes

—  True edges

Cellular System - RNA Velocity
Model Bayes-SHD | AUC 1 KL | NLL |

- — —p Potential edges

/-DynBCD 26 0.1 0.56 £0.01 321.95 £ 3.34 —
Z-DynDiBS 6.5+04 047+0.01 550.17 1+ 16.63 —
Z-DynGFN 3304 0.59 +0.03 44.98 + 18.60 —
h-DynBCD 10.1 0.8 0.53 £0.03 587.41 =24.00 0.094 = 0.003
h-DynDiBS 9.6 +4.2 0.51+£0.13 560.85 1 83.83 0.084 + 0.0
e \We estimate dx (RNA VelOCity) using scVelo h-DynGFN 514+12 0.58 4+ 0.05 39.82 +£28.05 0.109 & 0.001

(Bergen et al. Nature Biotechnology (2020))
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Conclusions and Future Work

* |nlow dimensions, DynGFN is able to better model
distributions over possible explanatory structure compared
to baselines

* DynGFN is able to (to some degree) learn GRN structure
from single-cell transcriptomic data
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Conclusions and Future Work

* |nlow dimensions, DynGFN is able to better model
distributions over possible explanatory structure compared
to baselines

* DynGFN is able to (to some degree) learn GRN structure
from single-cell transcriptomic data

e There remains lots to still do!

* How do we scale? (so far works only in small systems)

e |s there a better way to approximate p(G)?

 How do we incorporate interventions/perturbations??
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