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How do we learn the Gene Regulatory Network?
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• Gene Regulatory Network (GRN)

• Describes interactions between genes and 
their products that control gene expression 
and cellular function

• Gene Regulatory Network Inference

• GRN inference is a fundamental problem in 
biology because of its applications to our 
understanding of cell function, drug 
discovery, cell development …

• It can be cast as a causal structure 
learning problem
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GRN inference from data is hard! 

• Causal discovery / structure learning is 
generally a difficult problem.

• Learning GRNs from data remains far from 
solved

• No single method works well for every 
system / dataset
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• Causal structure learning for GRNs come 
with two non-standard challenges:

1. Gene regulation contains feedback/
cycles 

2. Observations are limited and have 
measurement noise

• This induces a multimodal distribution of 
graphs that explain the data

• Great … let’s just model this uncertainty
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• We want to explicitly model the uncertainty 

over possible structures / GRNs

• Objective: learn a posterior over graphs 
and parameters of the structural model that 
best explain the data

p(G, θ |D) ∝ p(D |G, θ)p(θ |G)p(G)

• This factorization forms the basis of our 
inference procedure

• (We can use uncertainty over edges to 
inform how to perturb the system, perhaps) 
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acquire data of the form D = (x, dx)

• This helps us pose the problem as sparse 
identification of dynamical system

dxi(t)
dt

= fi(Pa(xi), ϵi)

• This models causal structure between genes over 
time (and includes cyclic feedback)

Riba, et al. Nature Communications (2022)
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• The graph sampler is a generative model that 
approximates  (this is a discrete distribution)p(G)

• We use recent advances in generative flow networks 
(GFlowNets, GFNs) to learn a complex posterior over 
discrete/graph structure
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GFlowNets seem to do well in approximating 
multi-modal discrete distributions 

(Atanackovic et al. arxiv, 2024)

(Bengio et al. NeurIPS, 2021)
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• Very large space of graphs  to search over 

— we can reduce this to help the model: 
G

2d2

• We can exploit the independence structure 
of our problem to improve scalability

Q(G |D) = ∏
i∈[1,…,d]

Qi(G[ ⋅ , i] |D)

• This way, we learn  GFNs. Thus search 
reduces to  possible graphs instead of 

d
d2d
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• Lastly, we need to learn a set of parameters  for 
each respective graph , i.e. 

θ
G P(θ |G)

•  define the regulatory functions between 
variables (genes).  denotes the existence of a 
relationship.

fθ
G

• For this, we consider a HyperNetwork to learn the 
parameters of the structural model given graph 
structure
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DynGFN for Bayesian Dynamic Structure Learning — a fully differentiable framework

• Note, our framework is not limited to GFlowNets (any sampler for  can be used)G ∼ Qψ(G)
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Results on synthetic 20-D linear and non-linear systems

Simulating synthetic data over possible structures
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Results using scRNA-seq expression and velocity  
data for 5 genes 

• We estimate  (RNA velocity) using scVelo 
(Bergen et al. Nature Biotechnology (2020))
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Conclusions and Future Work
• In low dimensions, DynGFN is able to better model 

distributions over possible explanatory structure compared 
to baselines

• DynGFN is able to (to some degree) learn GRN structure 
from single-cell transcriptomic data

• There remains lots to still do!


• How do we scale? (so far works only in small systems)


• Is there a better way to approximate ?


• How do we incorporate interventions/perturbations?

p(G)
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