DynGFN: Towards Bayesian Inference of Gene Regulatory Networks with GFlowNets

Lazar Atanackovic*, Alexander Tong*, Bo Wang, Leo J. Lee, Yoshua Bengio, Jason Hartford

How can we "reprogram" *diseased* cells back to *healthy* cells?

Healthy cell population

How can we "reprogram" *diseased* cells back to *healthy* cells?

DynGFN

How can we "reprogram" *diseased* cells back to *healthy* cells?

DynGFN

How can we "reprogram" *diseased* cells back to *healthy* cells?

DynGFN

Gene Regulatory Network

How can we "reprogram" *diseased* cells back to *healthy* cells? How do we learn the **Gene Regulatory Network**?

Gene Regulatory Network

Gene Regulatory Network (GRN)

- **Gene Regulatory Network (GRN)** \bullet
 - Describes interactions between genes and lacksquaretheir products that control gene expression and cellular function

- **Gene Regulatory Network (GRN)** \bullet
 - Describes interactions between genes and lacksquaretheir products that control gene expression and cellular function
- **Gene Regulatory Network Inference** lacksquare

- Gene Regulatory Network (GRN)
 - Describes interactions between genes and \bullet their products that control gene expression and cellular function
- **Gene Regulatory Network Inference** lacksquare
 - GRN inference is a fundamental problem in biology because of its applications to our understanding of cell function, drug discovery, cell development ...
 - It can be cast as a *causal structure learning* problem

GRN inference from data is hard!

 Causal discovery / structure learning is generally a difficult problem.

GRN inference from data is hard!

- Causal discovery / structure learning is generally a difficult problem.
- Learning GRNs from data remains far from solved

nature methods

Explore content \checkmark About the journal \checkmark Publish with us \checkmark

nature > nature methods > analyses > article

Analysis | Published: 06 January 2020

Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data

Aditya Pratapa, Amogh P. Jalihal, Jeffrey N. Law, Aditya Bharadwaj & T. M. Murali

Nature Methods 17, 147–154 (2020) Cite this article

50k Accesses | 308 Citations | 74 Altmetric | Metrics

BMC Bioinformatics

Home About Articles Submission Guidelines Collections Join The Board Submit manuscript 🗗

Research Article Open access Published: 19 June 2018

Evaluating methods of inferring gene regulatory networks highlights their lack of performance for single cell gene expression data

Shuonan Chen & Jessica C. Mar ⊠

BMC Bioinformatics 19, Article number: 232 (2018) Cite this article

19k Accesses | 137 Citations | 14 Altmetric | Metrics

GRN inference from data is hard!

- Causal discovery / structure learning is generally a difficult problem.
- Learning GRNs from data remains far from solved
- No single method works well for every system / dataset

nature methods

Explore content \checkmark About the journal \checkmark Publish with us \checkmark

nature > nature methods > analyses > article

Analysis | Published: 06 January 2020

Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data

Aditya Pratapa, Amogh P. Jalihal, Jeffrey N. Law, Aditya Bharadwaj & T. M. Murali

Nature Methods 17, 147–154 (2020) Cite this article

50k Accesses | 308 Citations | 74 Altmetric | Metrics

BMC Bioinformatics

Home About Articles Submission Guidelines Collections Join The Board Submit manuscript 🗗

Research Article Open access Published: 19 June 2018

Evaluating methods of inferring gene regulatory networks highlights their lack of performance for single cell gene expression data

Shuonan Chen & Jessica C. Mar ⊠

BMC Bioinformatics 19, Article number: 232 (2018) Cite this article

19k Accesses | 137 Citations | 14 Altmetric | Metrics

 Causal structure learning for GRNs come with two non-standard **challenges**:

- Causal structure learning for **GRNs** come ulletwith two non-standard **challenges**:
 - 1. Gene regulation contains feedback/ cycles

VECTOR INSTITUTE Mila

- Causal structure learning for GRNs come with two non-standard **challenges**:
 - 1. Gene regulation contains feedback/ cycles
 - 2. Observations are limited and have measurement noise

- Causal structure learning for GRNs come with two non-standard **challenges**:
 - 1. Gene regulation contains feedback/ cycles
 - 2. Observations are limited and have measurement noise
- This induces a multimodal distribution of graphs that explain the data

- Causal structure learning for GRNs come with two non-standard **challenges**:
 - 1. Gene regulation contains feedback/ cycles
 - 2. Observations are limited and have measurement noise
- This induces a multimodal distribution of graphs that explain the data
- Great ... let's just model this *uncertainty* ullet

• We want to explicitly model the **uncertainty** over possible structures / GRNs

- We want to explicitly model the **uncertainty** over possible structures / GRNs
- **Objective:** learn a posterior over graphs and parameters of the structural model that best explain the data

dxdx dxX X X v_1 v_2 v_3 v'_3 **G**′

- We want to explicitly model the **uncertainty** over possible structures / GRNs
- **Objective:** learn a posterior over graphs and parameters of the structural model that best explain the data

 $p(G, \theta | D) \propto p(D | G, \theta) p(\theta | G) p(G)$

dxdx dxX X X v_1 v_2 v_3 v'_3 **G**′

- We want to explicitly model the **uncertainty** over possible structures / GRNs
- **Objective:** learn a posterior over graphs and parameters of the structural model that best explain the data

 $p(G, \theta | D) \propto p(D | G, \theta) p(\theta | G) p(G)$

 This factorization forms the basis of our inference procedure

dxdxdxX X X v_1 v_2 v_3 v'_3 **G**′

- We want to explicitly model the **uncertainty** over possible structures / GRNs
- **Objective:** learn a posterior over graphs and parameters of the structural model that best explain the data

 $p(G, \theta | D) \propto p(D | G, \theta)p(\theta | G)p(G)$

- This factorization forms the basis of our inference procedure
- (We can use uncertainty over edges to inform how to perturb the system, perhaps)

Structural Model

We use the fact that we can estimate instantaneous ulletchange of gene expression (*RNA-velocity*) to acquire data of the form D = (x, dx)

Riba, et al. Nature Communications (2022)

Structural Model

- We use the fact that we can estimate instantaneous change of gene expression (*RNA-velocity*) to acquire data of the form D = (x, dx)
- This helps us pose the problem as <u>sparse</u> identification of dynamical system

Riba, et al. Nature Communications (2022)

 $h_{\phi}(G) \to \theta$

 $f_{\theta}(x,G) \to \widehat{dx}$

 $h_{\phi}(G) \to \theta$

 $f_{\theta}(x,G) \to dx$

Graph Sampler

• The graph sampler is a generative model that approximates p(G) (this is a discrete distribution)

Graph Sampler

- The graph sampler is a generative model that approximates p(G) (this is a discrete distribution)
- We use recent advances in generative flow networks (GFlowNets, GFNs) to learn a complex posterior over discrete/graph structure

GFN Graph Sampler

 $Q_{\psi}(G) \propto p(G) \to G$

Generative modelling framework for • learning to sample from discrete unnormalized probability distributions

- Generative modelling framework for learning to sample from discrete unnormalized probability distributions
- GFlowNets learn a forward transition \bullet probability P_F that is used to sample trajectory $\tau = (s_0, \dots, s_f)$

$$F(s_n)\prod_{i=n}^{m-1} P_F(s_{i+1}|s_i) = F(s_m)\prod_{i=n}^{m-1} P_B(s_i|s_{i+1})$$

(Bengio et al. *JMLR*, 2022)

- Generative modelling framework for learning to sample from discrete unnormalized probability distributions
- GFlowNets learn a forward transition \bullet probability P_F that is used to sample trajectory $\tau = (s_0, \dots, s_f)$

$$F(s_n)\prod_{i=n}^{m-1} P_F(s_{i+1}|s_i) = F(s_m)\prod_{i=n}^{m-1} P_B(s_i|s_{i+1})$$

(Bengio et al. *JMLR*, 2022)

- Generative modelling framework for learning to sample from discrete unnormalized probability distributions
- GFlowNets learn a forward transition \bullet probability P_F that is used to sample trajectory $\tau = (s_0, \dots, s_f)$

$$F(s_n)\prod_{i=n}^{m-1} P_F(s_{i+1}|s_i) = F(s_m)\prod_{i=n}^{m-1} P_B(s_i|s_{i+1})$$

(Bengio et al. *JMLR*, 2022)

GFlowNets seem to do well in approximating multi-modal discrete distributions

(Bengio et al. NeurIPS, 2021)

DynGFN

(Atanackovic et al. arxiv, 2024)

The "Per-node" GFlowNet

 Very large space of graphs G to search over — we can reduce this to help the model: 2^{d^2}

The "Per-node" GFlowNet

- Very large space of graphs G to search over — we can reduce this to help the model: 2^{d^2}
- We can exploit the independence structure of our problem to improve scalability

$$Q(G|D) = \prod_{i \in [1,\dots,d]} Q_i(G[\cdot,i]|D)$$

The "Per-node" GFlowNet

- Very large space of graphs G to search over — we can reduce this to help the model: 2^{d^2}
- We can exploit the independence structure of our problem to improve scalability

$$Q(G|D) = \prod_{i \in [1,\dots,d]} Q_i(G[\cdot,i]|D)$$

This way, we learn d GFNs. Thus search ulletreduces to $d2^d$ possible graphs instead of 2^{d^2}

Parameter HyperNetwork

Lastly, we need to learn a set of para \bullet each respective graph G, i.e. $P(\theta \mid \zeta)$

DynGFN

$p(G, \theta, D) = p(D | G, \theta) p(\theta | G) p(G)$

 $Q_{\mathcal{W}}(G) \propto p(G) \to G$

 $p(\theta \mid G) = \delta_{\theta}$ $h_{\phi}(G) \to \theta$

Parameter HyperNetwork

- Lastly, we need to learn a set of para each respective graph G, i.e. $P(\theta \mid \zeta)$
- f_{θ} define the **regulatory functions** k variables (genes). G denotes the exi relationship.

$p(G, \theta, D) = p(D | G, \theta) p(\theta | G) p(G)$

 $Q_{\mathcal{W}}(G) \propto p(G) \to G$

 $p(\theta \mid G) = \delta_{\theta}$ $h_{\phi}(G) \to \theta$

Parameter HyperNetwork

- Lastly, we need to learn a set of para each respective graph G, i.e. $P(\theta \mid \zeta)$
- f_{θ} define the **regulatory functions** k variables (genes). G denotes the exi relationship.

• For this, we consider a **HyperNetwork** to learn the Gparameters of the structural model given graph structure

$p(G, \theta, D) = p(D | G, \theta) p(\theta | G) p(G)$ Parameter HyperNetwork G θ

 $p(\theta \mid G) = \delta_{\theta}$ $h_{\phi}(G) \to \theta$

Putting Everything Together

DynGFN for Bayesian Dynamic Structure Learning — a fully differentiable framework

• Note, our framework is not limited to GFlowNets (any sampler for $G \sim Q_{\psi}(G)$ can be used)

DynGFN

Synthetic Experiments

Simulating synthetic data over possible structures

DynGFN

Results on synthetic 20-D linear and non-linear systems

Linear System							
Model	Bayes-SHD \downarrow	AUC \uparrow	· KL↓	$\mathbf{NLL}\downarrow$			
ℓ-DynBCD	32.0 ± 0.27	0.71 ± 0.0	1707.45 ± 9.66				
<i>ℓ</i> -DynDiBS	29.2 ± 0.78	0.71 ± 0.0	6622.43 ± 171.67				
<i>ℓ</i> -DynGFN	$\textbf{22.8} \pm \textbf{1.4}$	$\textbf{0.75} \pm \textbf{0.01}$	$\textbf{1091.60} \pm \textbf{35.72}$				
$h ext{-DynBCD}$	$\textbf{5.5} \pm \textbf{1.1}$	0.89 ± 0.04	701.19 ± 46.99	$(9.83 \pm 0.59)\mathrm{E} - 5$			
h-DynDiBS	28.5 ± 4.2	0.51 ± 0.07	7934.90 ± 381.80	$(8.17 \pm 1.30) E - 6$			
h-DynGFN	$\textbf{6.7} \pm \textbf{0.0}$	$\textbf{0.94} \pm \textbf{0.0}$	$\textbf{350.92} \pm \textbf{30.15}$	(8.35 ± 0.02) E – 3			
Non-linear System							
Model	Bayes-SHD \downarrow	AUC \uparrow	$\mathbf{KL}\downarrow$	$\mathbf{NLL}\downarrow$			
ℓ-DynBCD	77.5 ± 8.3	0.42 ± 0.03	3814.86 ± 354.56				
<i>ℓ</i> -DynDiBS	75.7 ± 7.7	$\textbf{0.59} \pm \textbf{0.01}$	5893.65 ± 59.66				
<i>ℓ</i> -DynGFN	$\textbf{45.7} \pm \textbf{0.6}$	0.55 ± 0.0	$\textbf{226.25} \pm \textbf{6.58}$				
$h ext{-DynBCD}$	192.9 ± 0.7	0.50 ± 0.0	9108.69 ± 51.34	$(3.83 \pm 0.32)\text{E} - 4$			
h-DynDiBS	48.1 ± 9.0	0.53 ± 0.10	8716.64 ± 265.29	$(4.06 \pm 0.10) E - 6$			
h-DynGFN	$\textbf{32.6} \pm \textbf{0.9}$	$\textbf{0.67} \pm \textbf{0.01}$	$\textbf{193.28} \pm \textbf{8.53}$	$(1.47 \pm 0.11) \text{E} - 3$			

Real Data Experiments

• We estimate dx (RNA velocity) using scVelo (Bergen et al. Nature Biotechnology (2020))

Results using scRNA-seq expression and velocity data for 5 genes

Cellular System - RNA Velocity						
Model	Bayes-SHD ↓	$\mathbf{AUC}\uparrow$	$\mathbf{KL}\downarrow$	$\mathbf{NLL}\downarrow$		
ℓ-DynBCD	2.6 ± 0.1	0.56 ± 0.01	321.95 ± 3.34			
<i>ℓ</i> -DynDiBS	6.5 ± 0.4	0.47 ± 0.01	550.17 ± 16.63			
<i>ℓ</i> -DynGFN	3.3 ± 0.4	$\textbf{0.59} \pm \textbf{0.03}$	$\textbf{44.98} \pm \textbf{18.60}$			
h-DynBCD	10.1 ± 0.8	0.53 ± 0.03	587.41 ± 24.00	0.094 ± 0.003		
h-DynDiBS	9.6 ± 4.2	0.51 ± 0.13	560.85 ± 83.83	$\textbf{0.084} \pm \textbf{0.0}$		
h-DynGFN	$\textbf{5.1} \pm \textbf{1.2}$	$\textbf{0.58} \pm \textbf{0.05}$	$\textbf{39.82} \pm \textbf{28.05}$	0.109 ± 0.001		

Conclusions and Future Work

- In low dimensions, **DynGFN** is able to better **model** to baselines
- from single-cell transcriptomic data

distributions over possible explanatory structure compared

• **DynGFN** is able to (to some degree) **learn GRN structure**

Conclusions and Future Work

- In low dimensions, DynGFN is able to better model distributions over possible explanatory structure compared to baselines
- **DynGFN** is able to (to some degree) **learn GRN structure** from single-cell transcriptomic data
- There remains lots to still do!
 - How do we scale? (so far works only in small systems)
 - Is there a better way to approximate p(G)?
 - How do we incorporate interventions/perturbations?

Thanks for your Attention!

DynGFN

